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Messages From the Chairs 

We have entered the third year of the Brain-Mind Institute (BMI) and the International Conference on 

Brain-Mind (ICBM).   

 

Several U.S. government-funding agencies have started their funding programs as part of  

the President Barack Obama’s BRAIN Initiative.  The European Union’s Human Brain Project is going on.   

After a series of workshops, China seems to be still preparing its own brain project.  Understanding how 

the brain works is one of the last frontiers of the human race.   The progress on this subject will lead to 

not only new technology but also human improved ways to develop human societies.  

 

Therefore, BMI has been an earlier platform that treats every human activity as a part of science, including, 

but not limited to, biology, neuroscience, psychology, computer science, electrical engineering, 

mathematics, intelligence, life, laws, policies, societies, politics, and philosophy.  BMI plans to further span 

its service to the scientific community and public by promoting science in human activities.  

 

This year BMI offered BMI 831 Cognitive Science for Brain-Mind Research and BMI 871 Computational 

Brain-Mind.   We would like to thank the Institute of Automation of the Chinese Academy of Sciences 

(CASIA) for hosting the BMI 831 and BMI 871 classes as well as ICBM 2014.  The Brain-Mind Institute and 

the Brainnetome Center of  CASIA co-sponsored and co-organized BMI 2014.  As BMI planned to host 

BMI courses and ICBM at an international location, this year, it is Beijing.   BMI 2014 co-locates with the 

World Congress on Computational Intelligence 2014.  

 

As a multi-disciplinary communication platform, ICBM is an integrated part of the BMI program. ICBM 2014 

includes invited talks, talks from submitted papers, and talks from submitted abstracts.   As last year, 

ICBM talks will be video recorded and available publicly through the Internet.  

 

As before, the BMI Program Committee tries to be open-minded in its review of submissions.  This 

open-mindedness is necessary for all subjects of science, not just brain-mind subjects.  

 

Welcome to Beijing!    

 

Tianzi Jiang, General Co-Chair and Program Co-Chair 

Juyang Weng, General Chair and Program Chair 
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Invited Talks 

Brainnetome: A New Avenue to Understand the Brain and its Disorders 

Tianzi Jiang (Brainnetome Center, Institute of Automation) 

Abstract 

The Brainnetome (Brain-net-ome) is a new "-ome" in which the brain network is its basic 
research unit. It includes at least the following essential components: network topological 
structure (connectome), performance, dynamics, manifestation of functions and malfunctions 
of brain on different scales, genetic basis of brain networks, and simulating and modeling 
brain networks on supercomputing facilities. Here we will review progress on some aspects of 
the Brannetome, including Brainnetome atlas, Brainnetome-wise Association Studies (BWAS) 
of neurological and psychiatric diseases, such as schizophrenia and Alzheimer’s disease, and 
how the Brainnetome meets genome, and so on. It envisions that the Brainnetome will become 
an emerging co-frontier of brain imaging, information technology, neurology and psychiatry. 
Some long-standing issues in neuropsychiatry may be solved by combining the Brainnetome 
with genome.   

Short Biography 

Tianzi Jiang is Professor of Brain Imaging and Cognitive Disorders, Institute Automation of 
Chinese Academy of Sciences (CASIA), and Professor of Queensland Brain Institute, University 
of Queensland. He is the Director of Brainnetome Center of CASIA and the Chinese Director of 
the Sino-French Laboratory in Computer Science, Automation and Applied Mathematics 
(LIAMA), one National Center for International Research. His research interests include 
neuroimaging, Brainnetome, imaging genetics, and their clinical applications in brain 
disorders and development. He is the author or co-author of over 200 reviewed journal papers 
in these fields and the co-editor of six issues of the Lecture Notes in Computer Sciences. He is 
Associate Editor of IEEE Transactions on Medical Imaging, IEEE Transactions on Autonomous 
Mental Development, Neuroscience Bulletin and an Academic Editor of PLoS One. 
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Visual Perceptual Learning and Its Brain Mechanisms: A New Perspective 

Cong Yu (Peking University) 

Abstract 

Visual perceptual learning is regarded as a powerful tool to understand brain plasticity at the 

behavioral level. Learning is known to be specific to the trained retinal location and 

orientation, which places important constraints on perceptual learning theories, many of 

which assume that perceptual learning occurs in the early visual areas that are retinotopic and 

orientation selective. 

However, we created new experimental paradigms to demonstrate that location and 

orientation specificities can be eliminated from perceptual learning. In a “double training” 

paradigm, location specific learning can transfer completely to a new retinal location following 

additional training at the new location with an irrelevant task. Similarly, in a 

training-plus-exposure (TPE) paradigm, orientation/direction-specific learning can transfer 

completely to an untrained new orientation/direction if an observer is also passively exposed 

to the new orientation/direction through an irrelevant task. 

These results suggest that perceptual learning is more likely a high-level process that occurs 

beyond the retinotopic and orientation/direction selective visual cortex. What is being 

actually learned in perceptual learning? I will present evidence that perceptual learning may 

be a form of concept learning, in that the brain may learn a highly abstract “concept” of 

orientation/direction. On the other hand, why high-level perceptual learning shows specificity 

in the first place? I will present evidence that learning specificity may result from high-level 

learning not being able to functionally connect to the untrained visual inputs that are 

under-activated due to insufficient stimulation or suppression, as well as unattended, during 

training.  It is the double training and TPE paradigms that bottom-up and top-down 

reactivate untrained inputs to establish functional connections and enable learning transfer. 

Short Biography 

Cong Yu received his Ph.D. in experimental psychology from University of Louisville in 1995. 

After postdoc trainings in basic and clinical vision sciences at University of Houston and UC 

Berkeley, he joined in the Inst. of Neuroscience, Chinese Academy of Sciences in 2003, the Inst. 

of Cognitive Neuroscience and Learning, Beijing Normal University in 2006, and the 

Department of Psychology, Peking University in 2012. He is currently a professor with the 

Department of Psychology and an Investigator with the Peking-Tsinghua Center for Life 

Sciences at Peking University. 
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Scale-Free Music of the Brain 

Dezhong Yao (University of Electronic Science and Technology of China) 

Abstract 

To listen to brain activity as a piece of music, we proposed scale-free brainwave music (SFBM) 
technology, which translated the electroencephalogram (EEG) into musical notes according to 
the power law of both the EEG and music. In this talk, first shown is the general scale-free 
phenomena in the world, then a few versions of brain music are presented, they are music 
from one EEG channel, Quartet from multichannel EEGs, and music from both EEG and fMRI. 
Finally, potential application for mental health is discussed.  

Short Biography 

Dezhong Yao, PhD (1991, 2005), Professor (1995-), ChangJiang Scholar Professor (2006-); 
Dean, School of Life Science and Technology (2001-), University of Electronic Science and 
Technology of China, Chengdu 610054, China; Director, Key Laboratory for NeuroInformation, 
Ministry of Education of China (2010-); Head, Domestic Team of the 111 Project on 
NeuroInformation, Ministry of Education of China (2011-). His main research interests are 
Brain-X interaction including brain-computer interface, brainwave music interface, and 
Neuro-Imaging on music, epilepsy, cerebral palsy and plasticity. Since 1990, he has published 
100 more peer-reviewed international journal papers, with 1000 more citations. He won the 
Outstanding Youth Resaerch Fund of NSFC (2005), and the first class Natural Science Reward 
of the Ministry of Education (2010). Websites: 
http://www.neuro.uestc.edu.cn/bci/member/yao/yao.asp, and 
http://scholar.google.com/citations?user=ClUoWqsAAAAJ 
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The	  Brain	  Works	  like	  Bridge-‐Islands	  with	  Modulation	  
Juyang	  Weng	  (Fudan	  University	  and	  Michigan	  State	  University)	  

Abstract 

On	   one	   hand	   neuroscience	   is	   rich	   in	   data	   and	   poor	   in	   theory.	   	   	   On	   the	   other	   hand,	   many	  
computer	   scientists	   are	   busy	   with	   engineering	   inspired	   methods,	   not	   motivated	   by	   brain	  
inspired	  methods.	   	   However,	  in	  this	  talk,	  I	  argue	  that	  it	  is	  no	  longer	  true	  that	  “we	  do	  not	  know	  
how	  the	  brain	  works”.	   	   	   The	  knowledge	  of	  computer	  science	  is	  also	  necessary	  to	  understand	  
how	  the	  brain	  works.	   	   	   Supported	  by	  a	  series	  of	  experimental	  studies	  known	  as	  Where	  What	  
Networks	  (WWN-‐1	  through	  WWN-‐8),	  I	  present	  an	  overarching	  but	  intuitive	  analogical	  model	  
called	  bridge-‐islands.	   	   	   Each	  island	  is	  either	  a	  sensor	  (e.g.,	  an	  eye	  or	  an	  ear)	  or	  an	  effector	  (an	  
arm,	   or	   a	   gland).	   	   	   The	   brain	   is	   a	  multi-‐exchange	   bridge	   that	   connects	   to	   all	   the	   islands	   in	  
bidirectionally.	   	   	   It	   is	   not	   productive	   to	   model	   the	   brain	   statically	   as	   a	   connected	   set	   of	  
Brodmann	   areas,	   because	   in	   the	   born	   blind,	   the	   visual	   areas	   are	   automatically	   assigned	   to	  
audition	   and	   touch.	   	   Therefore,	   the	   bridge-‐island	  model	   describes	   how	   various	   brain	   areas	  
emerge	   from	  pre-‐natal	   and	  post-‐natal	   activities	  based	  on	   largely	   statistics.	   	   In	  other	  words,	  
the	  brain	  wires	  itself.	   	   	   We	  also	  discuss	  how	  the	  self-‐wired	  basic	  circuits	  become	  motivated	  
through	   four	   additional	   neural	   transmitters	   beyond	   glutamate	   and	   GABA	   -‐-‐-‐	   serotonin,	  
dopamine,	  acetylcholine,	  and	  norepinephrine.	   	   	   	  

Short Biography 

Juyang	   (John)	   Weng	   is	   a	   professor	   at	   the	   Dept.	   of	   Computer	   Science	   and	   Engineering,	   the	  
Cognitive	   Science	   Program,	   and	   the	   Neuroscience	   Program,	   Michigan	   State	   University,	   East	  
Lansing,	   Michigan,	   USA,	   and	   a	   Changjiang	   visiting	   professor	   a	   Fudan	   University,	   Shanghai,	  
China.	   	   He	   received	  his	  BS	  degree	   from	  Fudan	  University	   in	  1982,	  his	  MS	  and	  PhD	  degrees	  
from	  University	  of	  Illinois	  at	  Urbana-‐Champaign,	  1985	  and	  1989,	  respectively,	  all	  in	  Computer	  
Science.	   	   From	  August	  2006	  to	  May	  2007,	  he	  was	  also	  a	  visiting	  professor	  at	  the	  Department	  
of	  Brain	  and	  Cognitive	  Science	  of	  MIT.	   	   	   His	  research	  interests	  include	  computational	  biology,	  
computational	   neuroscience,	   computational	   developmental	   psychology,	   biologically	   inspired	  
systems,	  computer	  vision,	  audition,	  touch,	  behaviors,	  and	  intelligent	  robots.	   	   He	  is	  the	  author	  
or	  coauthor	  of	  over	  two	  hundred	  fifty	  research	  articles,	  including	  a	  book	  Natural	  and	  Artificial	  
Intelligence:	   Introduction	   to	   Computational	   Brain-‐Mind.	   He	   is	   an	   editor-‐in-‐chief	   of	  
International	   Journal	   of	   Humanoid	   Robotics	   and	   an	   associate	   editor	   of	   the	   IEEE	   Trans.	   on	  
Autonomous	  Mental	  Development,	  and	   the	  editor-‐in-‐chief	  of	   the	  Brain-‐Mind	  Magazine.	  He	   is	  
instrumental	   in	   the	  establishment	  and	  operation	  of	   the	  Brain-‐Mind	   Institute,	   a	  nonprofit	   for	  
cross-‐disciplinary	   education	   and	   research.	   	   He	   was	   an	   associate	   editor	   of	   IEEE	   Trans.	   on	  
Pattern	   Recognition	   and	   Machine	   Intelligence,	   an	   associate	   editor	   of	   IEEE	   Trans.	   on	   Image	  
Processing.	   	   He	  is	  a	  Fellow	  of	  IEEE.	  
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The New Memory Technology to Support Brain-Like Computer 

Luping Shi, Jing Pei, and Lei Deng Beata Jarosiewicz (Tsinghua University) 

Abstract 

The memory is the one of the main components of computer system as well as the key 
component for hand phone and cloud computing. For the last century, scaling has been being 
the main driving force for all of the current memory technologies in order to increase the 
density and reduce the cost. There are several kinds of memory to form a data storage 
hierarchy, such as DRAM,SRAM, Flash, optical disks, and hard disk drive. Although people have 
put a lot of effort to break scaling limitation, it could be estimated that all of above 
technologies might reach their scaling limits in about 10 to 15 years. On the other hand CPU 
also faces the same problem. Thus it is the time to find a new way to develop memory and CPU 
and to further develop computer. Brain like computer is one of the best approaches to solve 
the above problem. In this talk, the current statuses of memory and brain-like computer are 
briefly introduced. The requirement for the new memory technology to support brain-like 
computer is analyzed. The new memory should be capable of emulating some of brain 
functions. It should have the unique integrated function of storage and processing. The main 
problem and the possible approaches will be discussed.  

Short Biography 

Prof.Luping Shi received his Doctor of Science  from University of Cologne, Germany in 1992. 
In 1993, he worked as a Post-doctoral fellow in Fraunhofer Institute of Applied Optics and 
Precision Instrument, Jena, Germany. From 1994 to 1996, he worked as a research fellow in 
Department of Electronic Engineering, City University of Hong Kong. From 1996 to 2013 he 
worked in data storage institute, Singapore as a senior scientist and division manager and led 
nonvolatile solid-state memory (NVM) and artificial cognitive memory (ACM) and optical 
storage researches. He joined Tsinghua university, China, as a national distinguish professor 
and director of optical memory national engineering research center in Mar 2013. His main 
research areas include NVM, ACM, optical data storage, integrated opto-electronics, and 
nanoscience.  He has published more than 150 papers in prestigious journals including 
Science,  Nature Photonics, Advanced Materials, Physical Review Letters,  filed and granted 
more than 10 patents and conducted more than 60 keynote speech or invited talks at many 
important conferences during last 10 years. He is the recipient of the National Technology 
Award 2004 Singapore. He served as general co-chair of The 9th Asia-Pacific Conference on 
Near-field Optics2013, IEEE NVMTS 2011- 2014,East-West Summit on Nanophotonics and 
Metal Materials 2009 and ODS’2009.   
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Brain-Inspired Multi-Anything Algorithms for Medical Image Analysis and 
Computer Vision 

Bart M. Romeny (Eindhoven University of Technology, Netherlands and Northeastern University) 

Abstract 

Electrophysiological, optical, opto-genetic, fMRI-, diffusion MRI and other brain imaging 

techniques have revealed an astoundingly well organized visual front-end. However, real 

understanding and generic modeling of the complex representations in the huge filter banks 

still offers many challenges. The multi-scale structure has inspired to (now in computer vision 

widely used) robust differential shift- and rotation invariant operators and keypoint detectors, 

and to hierarchical segmentation approaches and recognition techniques. The 

multi-orientation structure, recognized in the cortical pinwheels and their interconnections, 

has inspired to robust contextual tracking and adaptive enhancement operations. 

We will discuss an innovative Lie-group based model for simultaneous analysis in the 

multi-scale, multi-orientation, multi-velocity, multi-disparity and multi-color domain. 

Applications will be presented for contextual, crossing preserving enhancement of elongated 

structures, such as 2D and 3D brain vasculature (e.g. quantitative retinal and extra-orbital 

vessel analysis exploited in a large-scale program for screening for early diabetes), and 

complex 3D brain dwMRI tractography, and perceptual grouping. The results are highly 

promising, and regularly outperform classical approaches, but need substantial processing, 

which today can be directed to, also brain-inspired, massively parallel GPU processing. 

Short Biography 

Bart M. ter Haar Romeny received the MSc degree in Applied Physics from Delft University of 

Technology in 1978, Ph.D. from Utrecht University in 1983 in biophysics. He became principal 

physicist of the Utrecht University Hospital Radiology Department. He was co-founder and 

associate professor at the Image Sciences Institute (ISI) of Utrecht University (1989-2001). 

From 2001, ter Haar Romeny holds the chair of Biomedical Image Analysis at the Department 

of Biomedical Engineering of Eindhoven University of Technology and Maastricht University in 

the Netherlands, and since 2011 is appointed distinguished professor at Northeastern 

University, Shenyang, China. His research interests include quantitative medical image 

analysis, its physical foundations and clinical applications. His interests are in particular the 

mathematical modeling of the visual brain and applying this knowledge in operational 

computer-aided diagnosis systems. He authored an interactive tutorial book on multi-scale 

computer vision techniques, edited a book on non-linear diffusion theory in computer vision. 



xii 

 

He is author of over 200 refereed journal and conference papers, 12 books and book chapters, 

and holds 2 patents. He supervised many PhD students, of which 4 graduated cum laude. He is 

senior member of IEEE, and chairman of the Dutch Society for Pattern Recognition and Image 

Processing. 

 

 

Information Processing in the Visual Pathway 

Zhongzhi Shi (Institute of Computing Technology) 

Abstract 

Intelligence Science is an interdisciplinary subject that dedicates to joint research on basic 

theory and technology of intelligence by brain science, cognitive science, artificial intelligence 

and other disciplines. We have proposed a mind model CAM which is a general framework for 

brain-like machines. This talk will focus on the information processing in the visual pathway. 

Information processing in the visual pathway can be separated into objective processing and 

spatial processing. The Conditional Random fields based Feature Binding (CRFB) 

computational model is applied to visual objective processing. Feature integration theory is 

widely approved on the principles of the binding problem, which supplies the roadmap for our 

computational model. We construct the learning procedure to acquire necessary 

pre-knowledge for the recognition network on reasonable hypothesis–maximum entropy. 

With the recognition network, we bind the low-level image features with the high-level 

knowledge. For visual spatial processing, we explore three important kinds of relationship 

between objects that can be queried: topology, distance, and direction. 

Short Biography 

Zhongzhi Shi is a professor at the Institute of Computing Technology, Chinese Academy of 

Sciences, leading the Intelligence Science Laboratory. His research interests include 

intelligence science, machine learning, multi-agent systems and image processing. Professor 

Shi has published 14 monographs, 15 books and more than 450 research papers in journals 

and conferences. He has won a 2nd-Grade National Award at Science and Technology Progress 

of China in 2002, two 2nd-Grade Awards at Science and Technology Progress of the Chinese 
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Academy of Sciences in 1998 and 2001, respectively. He is a fellow of CCF and CAAI, senior 

member of IEEE, member of AAAI and ACM, Chair for the WG 12.2 of IFIP. He serves as 

Editor-in-Chief for International Journal of Intelligence Science and Series on Intelligence 

Science. He has served as Vice President for Chinese Association of Artificial Intelligence and 

General Secretary of China Computer Federation. 

 

 

Control for the Autonomy of Mobile Robots  

Jianda Han (State Key Laboratory of Robotics, Shenyang Institute of Automation) 

Abstract 

With the great development of robotics in recent years, many field robots have been expected 

to carry out tasks in outdoor surroundings, where the robots may suffer from complex 

terrains, dynamic obstacles/dangerous, bad weather conditions, and so on. Thus, one of the 

challenging topics is: how a field robot can survive the environment while handling the 

assigned tasks in an optimal/intelligent approach. The autonomy, which enables robots 

working on those complicated circumstances with reduced human intervention, has been 

becoming one of the main goals of mobile robotics. In this talk, I will introduce a feasible 

control scheme that has been implemented on and experimentally tested on ground mobile 

and flying robots. The scheme includes four aspects: 1) modeling and understanding the 

behavior environment; 2) behavior optimization; 3) autonomous learning; and 4) cooperation 

and coordination of multiple robots. By this scheme, we have realized the autonomous flight of 

the 100kg-level flying robots and the long-distance autonomous navigation of polar robots. 

Some of the experimental tests and the applications will be also demonstrated in this talk.  

Short Biography 

Han Jianda received his PhD degree in Electrical Engineering from the Harbin Institute of 

Technology in 1998. Currently he is a professor and deputy director of the State Key 

Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences. His 

research interests include nonlinear estimation and robust control, control for the autonomy 

of robots, and robotic system integrations and applications such as medical and assistant 
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robots, ground mobile robots, as well as flying robots. His team developed the first polar robot 

of China, which was tested in Antarctica in 2008 and 2011; and also the 100kg flying robot, 

which has realized its applications such as rescue, precision agriculture, power cable 

construction, etc. Dr. Han currently also serves as a member of the 5-person Expert Panel of 

the Intelligent Robot Division, the National High Technology Research and Development (863) 

Program of China. 

 

 

Brainnetome Studies of Alzheimer's Disease with Neuroimaging 

Yong Liu (Brainnetome Center, Institute of Automation) 

Abstract 

The human brain has been described as a large, sparse, complex network. Some of previous 

neuroimaging studies have provided consistent evidence of dysfunctional connectivity among 

the brain regions in the AD; however, little is known about whether or not this altered 

functional connectivity causes disruption of the efficient of information transfer of brain 

functional networks in the AD. We will introduce the altered functional connectivity pattern of 

the AD from region of interest analysis, to local network analysis and to whole brain network 

analysis. And there has been a considerable amount of work recently on the characterization 

of brain structure and function in the context of networks. This includes identifying correlated 

changes, defining various network properties (such as long-distance connectivity, rich club 

behavior, or more general information theoretic measures) and evaluating changes in these 

properties in the AD groups. Detection and estimation of these alterations could be helpful for 

understanding the functional alteration of the AD. 

Short Biography 

Dr. Yong Liu is an associate professor in Brainnetome Center, National Laboratory of Pattern 

Recognition, Institute of Automation, Chinese Academy of Sciences. He received his PhD 

degree from CASIA in 2008 and obtained his MSc degree from Beijing University of 

Technology in 2005. Since June 2008, he joined CASIA as an assistant/associate research 

professor. He is a visiting scholar from April 2011 to March 2012 in Brain Mapping Unit in 
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University of Cambridge, where he worked with Professor Ed Bullmore. His main interests are 

the analysis of brain networks using multi-modal approaches as well as the application in 

cognitive disorders, especially in Alzheimer disease and mild cognitive impairment. To date, 

he has authored about 52 peer-reviewed journal articles and has an h-index of 19. He is a 
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Neuromorphic Motivational Systems for Sequential Tasks in
Dynamic Environment

Dongshu Wang, Yihai Duan, and Juyang Weng, Fellow, IEEE

Abstract— Although reinforcement learning has been exten-
sively studied, few agent models that incorporate values use
neuromorphic architecture. By neuromorphic, we mean that the
motivational system is a biologically plausible neural network.
This work proposes a neuromorphic motivational system, which
includes two subsystems — the serotonin system and the
dopamine system for a sequential task in dynamic environment.
To testify the effects of serotonin and dopamine, we experiment
with this motivational system for robot navigation in dynamic
environment under different settings. The three experiments
all illustrated that the reinforcement learning via the serotonin
and the dopamine systems is beneficial for developing desirable
behaviors in this set of sequential tasks — staying statistically
close to its friend and away from its enemy. It was indeed
the punishment and reward from serotonin and dopamine that
cause the agent’s behaviors. The agent can decide how to react
in given situations by itself rather than being explicitly taught
where to go.

I. INTRODUCTION

AMajor function of human brain is to develop circuits
for processing sensory signals and generating motor

actions. The signals in the brain are largely transmitted
through neurotransmitters, endogenous chemicals that are
sent from a neuron to a target cell across a synapse [5]. This
modulatory system of the brain is often called motivational
system or value system in neuroscience and psychology. It is
about how neurons in the brain use a few particular types of
neural transmitter to indicate certain properties of signals. A
modulatory system goes beyond information processing and
sensorimotor behaviors. It provides mechanisms to develop-
mental system so that it develops dislikes and likes [21].

A. Neural Modulatory Transmitters

In the subject of neural modulation, a small group of
neurons synthesize and release a particular type of neural
modulatory transmitters which diffuse through large areas of
the nervous system, producing an effect on many neurons.
Such processing is characterized by direct synaptic transmis-
sion — the pre-synaptic neuron directly influences the post-
synaptic neuron through different types of neurotransmitters.
For example, glutamate is a kind of neurotransmitter. Nerve
impulses trigger release of glutamate from the pre-synaptic
cell [5]. A sufficient number of bindings by neurotransmitters
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results in the firing of the post-synaptic neuron [3]. Each cell
typically has many receptors, of many different kinds.

While glutamate and GABA are neurotransmitters whose
values are largely neutral in terms of reference at the time
of birth, some other neurotransmitters appear to have been
used by the brain to represent certain signals with intrinsic
values [21], [3], [4]. For example, serotonin (5-HT) seems to
be involved with pain, punishment, stress and threats; while
dopamine (DA) appears to be related to pleasure, wanting,
anticipation and reward [4]. Therefore, 5-HT and DA, along
with many other neurotransmitters that have inherent values,
seem to be useful for modeling the intrinsic value system of
the central nervous system in artificial neural networks.

B. Motivational System

Psychological studies have provided rich behavioral evi-
dence about the existence of the motivational system [21],
[1], [10], [11], [13], [2], [15], [16], [22], [23]. It is known
that the motivational system is important to the autonomous
learning of the brain. However, although there is a very rich
literature about models of neuromodulatory systems, such
models are limited in terms of computational functions due to
a few well known limitations in prior neural network models.
Weng argued that we have overcome such limitations [20].

The motivational systems are often referred to as diffuse
systems in the sense that each modulatory neuron in such a
system uses a particular neurotransmitter (e.g., serotonin or
dopamine) and makes diffuse connections, via such neuro-
transmitters, with many other neurons [21]. Both serotonin
and dopamine come in many different forms, since the
brain may conveniently use a particular neurotransmitter for
different purposes in different parts of the body. There are
other forms of serotonin and dopamine that have different
effects that are not widely understood [11], [14]. We will
focus on the forms of dopamine and serotonin that affect the
brain as rewards and punishment, respectively.

Dopamine is released in the brain’s Ventral Tegmental
Area (VTA) and particularly the nucleas accumbens act
as a general facilitative agonist for pleasure. Dopamine is
associated with reward prediction [11]. If an agent gets a
reward, then dopamine is released in the brain. If an agent is
expecting a reward, dopamine is also released. For example,
if a dog is trained that it always gets food when it hears a
bell, then dopamine will be released into the brain at the time
that it normally would receive the food. If the dog does not
get food at the expected time, then the dopamine levels will
drop below normal for a short period of time.

© BMI Press 2014 1



TABLE I
DIFFERENCE BETWEEN OUR PAPER AND MAIN REFERENCES

Type Motor (Z area) neurons Internal (Y area) neurons
Episodic tasks Palaski [17] Zheng [25], Weng [22]
Sequential tasks Daly [5] This work

Serotonin often appears to be dopamines counterpart [6].
Dopamine excites the neurons while serotonin inhibits them.
One specific type of serotonin with this effect is 5-HT. Sero-
tonin leads to behavior inhibition and aversion to punishment.
There are two parts of the brain that release serotonin, the
dorsal raphe and the median raphe. The dorsal raphe connects
serotonin to all of the areas that have dopamine connections
[12]. Serotonin from the dorsal raphe interacts with dopamine
to cause the agent to avoid behaviors that the dopamine
encourages.

C. Novelty and Importance

Our improvement on the motivated development network
lies in the following three aspects:

Firstly, though Zheng [25] and Weng [22] also considered
the effect of serotonin and dopamine on the neurons in Yu,
their experiment object is face recognition which is a pattern
recognition problem. The recognition result is determined
only by the current one decision. But robot navigation is a
typical sequential problem because the current decision can
affect the following one, and the final result is determined
by all the former decisions instead of the last one.

Secondly, previous work [5] and [22] studied the effect
of serotonin and dopamine on the learning rate of Z qual-
itatively. Our research studied their effect on the learning
rate of Z and Yu quantitatively. In other words, we calculate
the linear punishment (or reward) value according to the
distance between the agent and the friend (or enemy) and
the threshold, instead of the qualitative way.

Finally, we studied the effects of different environments
(such as different teachers) on the final navigation perfor-
mance. To the strict “teacher”, even though you do something
very well, he still consider you have not done enough. On
the contrary, to the tolerant “teacher”, though you do not
do well, he may think you have done quite well. To the
same situation, different environments will produce different
effects.

The difference between our paper and the main references
is illustrated in table 1.

In sequential tasks, the behavior of the agent is determined
by its past experience, and it can imitate and adapt the social
environment. In other words, if the agent has many friends
and little enemies, thus it always receives reward, and it will
become braver. Conversely, if the agent has many enemies
and little friends, thus it always receives punishment, and
it will become very more careful. It is very important and
essential to study the effect of serotonin and dopamine on
the sequential tasks.

The remainder of the paper is organized as follows. Section
II introduces the theory for value systems of sequential tasks.

Section III describes the theory of developmental network
behind our model. Simulation experiments are presented and
analyzed in section IV, while the conclusions are given in
the last section.

II. MOTIVATIONAL SYSTEM OF SEQUENTIAL TASKS

In terms of context dependence, there are two types of
tasks, episodic and sequential.

A. Episodic and Sequential Tasks

In an episodic task environment, agent’s experience is
divided into atomic episodes. Each episode consists of the
agent perceiving and then performing a single action. Cru-
cially, the next episode does not depend on the actions taken
in previous episodes. In episodic environments, the choice
of action in each episode depends only on the episode itself.
Many classification tasks are episodic. For example, an agent
that has to spot defective parts on an assembly line bases each
decision on the current part, regardless of previous decisions;
moreover, the current decision does not affect whether the
next part is defective. In sequential environments, on the
other hand, the current decision could affect all future
decisions. Chess, taxi driving are sequential. In these cases,
short-term actions can have long-term consequences [18].

Robot navigation is a typical sequential task because the
behavior of the agent also depends on its past actions.
In Fig. 2, there are four trajectories: T1 (denotes strong
reward, weak punishment), T2 (denotes strong reward, strong
punishment), T3 (denotes weak reward, strong punishment)
and T4 (denotes weak reward, weak punishment). Though the
four trajectories are different, they use the same learning rule.
If there is no previous punishments from the enemy, the agent
will move along the direction of the blue arrow (it depends on
how much reward the agent receives in the past). Similarly, if
there was no previous rewards from the friend, the agent will
still move along the direction of the red arrow (it depends
on how much punishment the agent receives in the past).
If the agent receives both the reward and the serotonin, it
will move along the direction of black arrow(it depends on
how much punishment and reward the agent receives in the
past), so its moving is determined by the past experience and
actions. The memories of past trajectories are in the network
weights and the network predicted amounts of serotonin and
dopamine, but not exactly the trajectories themselves.

B. Reinforcement Learning in Sequential Tasks

Reinforcement learning is the problem faced by an agent
that must learn behavior through trial-and-error interactions
with a dynamic environment. Without some feedback about
what is good and what is bad, the agent will have no grounds
for deciding which move to make [18]. The agent needs to
know that something good has happened and that something
bad has happened. This kind of feedback is called a reward
or punishment. In the natural world, signals from a pain
sensor is associated with bad and those from a sweet sensor
is associate with good. There are many additional reward and
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Fig. 1. How much rewards and how much punishments that the agent
predicts depend on how the agent moved in the past. The closer it moved
toward the enemy, the more punishment it would receive and the enemy
would affect the action of the agent more. The further it moved away from
the friend, the more reward it would receive and the friend would affect the
action of the agent more.

punishment sensors. However, the brain mechanisms of such
an association is largely unknown.

Reinforcement learning has been carefully studied by ani-
mal psychologists for many years [7], [9], [8], [19]. However,
those models are symbolic in the sense that each mode has
specific, handcrafted meanings for a specific task.

Using brain-like emergent representations, each neuron
does not have a specific task meaning. Patterns of neuronal
firing emerge from interactions of the physical external
world. In particular, a motor neuron (or a firing patten of
neurons) does not represent a bad action until it consistently
fires with the presence of serotonin. Weng et al. [22] modeled
that serotonin and dopamine are associated with pain sensors
and sweet sensors, or punishment and reward, respectively,
in general. Serotonin inhibits the firing of the current motor
neurons and dopamine excites the firing of the current
motor neurons. Hopefully, since the diffusions of such neural
transmitters are relatively slow, statistically, the level of
such neurotransmitters correlates with the responsible motor
actions reasonably well.

The above is about motor neurons. In a sequential task,
however, each reinforcer (punishment or reward) is a conse-
quence of a sequence of past state trajectories indicated by
sensory-state pairs in terms of (x(t), z(t)):

(x(t−m), z(t−m)), ..., (x(t−1), z(t−1)), (x(t), z(t)) (1)

where x(t) and z(t) are the sensory and state vectors, re-
spectively. In our Developmental Network (DN) framework,
state and action are the same since reporting state is an action.
E.g., say bad words is an action punishable.

The Y area, represented by a large number of Y neurons,
represents a multi-exchange bridge that form feature clusters
in the two islands X area and Z area (as discussed in the
next section):

(x(t− 1), z(t− 1))→ y→ (x(t), z(t))

where → means “predicts”. If the following (x(t), z(t)) is
independent with y, the task is episodic. In a sequential task,
the following (x(t), z(t)) depends on y.

In our prior work [25], we modeled that serotonin and
dopamine both increase the learning rate of the firing Y
neurons to memorize the important event in episodic tasks. In
this paper, we study how serotonin and dopamine increase
the learning rate of firing Y neurons for sequential tasks.
As we can see from the above analysis, changing the rate
using serotonin and dopamine transmitter should improve the
performance of learning sequential tasks.

III. THEORY OF DEVELOPMENTAL NETWORK

A. Developmental Network

Developmental network is the basis of a series of Where-
What networks, whose 7th version, namely, the latest version,
appeared in [24]. The simplest version of a Development
Network (DN) has three areas, the sensory area X , the
internal area Y , and the motor area Z, with an example in
Fig. 2. The internal area Y as a “bridge” to connect its two
“banks”- the sensory area X and the motor area Z. The DN

Fig. 2. The architecture of DA. It contains top-down connections from Z
to Y for context represented by the motor area. It contains top-down
connections from Y to X for sensory prediction. Pink areas are human
taught. Yellow areas are autonomously generated (emergent and developed).
Although the foreground and background areas are static here, they change
dynamically.

algorithm is depicted as follows:
1) At time t = 0, for each area A in {X,Y, Z}, initialize its

adaptive part N = (V,G) and the response vector r, where
V contains all the synaptic weight vectors and G stores all
the neuronal ages.

2) At time t = 1, 2, ..., for each area A in {X,Y, Z}, do
the following two steps repeatedly forever:

a) Every area A computes using area function f .

(r′, N ′) = f(b, t, N) (2)

where f is the unified area function described in the follow-
ing equation (3), b and t are areas bottom-up and top-down
inputs from current network response r, respectively; and r′

is its new response vector.
b) For each area A in {X,Y, Z}, A replaces: N ← N ′

and r← r′.
If X is a sensory area, x ∈ X is always supervised and

then it does not need any synaptic vector. The z ∈ Z is
supervised only when the teacher chooses to. Otherwise, z
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gives (predicts) motor output. Next, we describe the area
function f .

Each neuron in area A has a weight vector v = (vb,vt),
corresponding to the area input (b, t), if both bottom-up part
and top-down part are applicable to the area. Otherwise, the
missing part of the two should be dropped from the notation.
Its pre-action energy is the sum of two normalized inner
product:

r(vb,b,vt, t) =
vb

||vb||
· b

||b||
+

vt

||vt||
· t

||t||
= v̇ · ṗ (3)

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized
synaptic vector p = (ḃ, ṫ).

To simulate lateral inhibition (winner takes all) within each
area A, only top-k winners fire and update. Considering k =
1, the winner neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t) (4)

where c is the neuron number in the area A.
The area dynamically scale top-k winners so that the top-

k responses with values in [0,1]. For k = 1, only the single
winner fires with responses value yj = 1 and all other
neurons in A do not fire.

All the connections in a DN are learned incrementally
based on Hebbian learning—co-firing of the pre-synaptic
activity ṗ and the post-synaptic activity y of the firing
neuron. Consider area Y , as other area learn in a similar
way. If the pre-synaptic end and the post-synaptic end fire
together, the synaptic vector of the neuron has a synapse gain
yṗ . Other non-firing neurons do not modify their memory.
When a neuron j fires, its weight is updated by a Hebbian-
like mechanism:

vj ← ω1(nj)vj + ω2(nj)yjṗ (5)

where ω2(nj) is the learning rate depending on the firing
age nj of the neuron j and ω1(nj) is the retention rate with
ω1(nj) + ω2(nj) ≡ 1. The simplest version of ω2(nj) is
1/nj , which gives the recursive computation of the sample
mean of input ṗ :

vj =
1

nj

nj∑
i=1

ṗ(ti) (6)

where ti is the firing time of the neuron. The age of the
winner neuron j is incremented nj ← nj+1. A component in
the gain vector yjṗ is zero if the corresponding component in
ṗ is zero. Each component in vj so incrementally computed
is the estimated probability for the pre-synaptic neuron to
fire under the condition that the post-synaptic neuron fires. A
more complicated version of ω2(nj) is presented in the next
section when we discuss the architecture of our motivated
system.

B. Motivational Developmental Network (MDN)

According to literature [6], serotonin and dopamine recep-
tors are also found in brain neurons except the motor neurons.
It means that the release of serotonin and dopamine, which
occurs in RN and VTA areas, should also have effect on
neurons in Yu neurons.

Fig. 3 presents the architecture of the MDN. It links all
pain receptors with RN located in the brain stem–represented
as an area, which has the same number of neurons as
the number of pain sensors. Every neuron in RN releases
serotonin. Similarly, it also links all sweet receptor with
VTA–represented as an area, which has the same number
of neurons as the number of sweet sensors. Every neuron in
VTA releases dopamine.

Fig. 3. A motivated DN with serotonin and dopamine modulatory
subsystems. It has 9 areas. RN has serotonergic neurons. Neurons in
YRN and Z have serotoninergic synapses. VTA has dopaminergic neurons.
Neurons in YV TA and Z have dopaminergic synapses. The areas Yu, YRN

and YV TA should reside in the same cortical areas, each represented by a
different type of neurons, with different neuronal densities.

Serotonin and dopamine are synthesized by several brain
areas. For simplicity, we use only RN to denote the area that
synthesizes serotonin and only the VTA to denote the area
that synthesizes dopamine, although other areas in the brain
also involved in the synthesis of these neurotransmitters.

Therefore the sensory area X = (Xu, Xp, Xs) consisting
of an unbiased array Xu, a pain array Xp and a sweet
array Xs. Y = (Yu, YRN , YV TA) connects with X =
(Xu, Xp, Xs), RN and VTA as bottom-up inputs and Z as
top-down input.

Within such a motivational developmental network, the
motor area is denoted as a sequence of neurons Z =
(z1, z2, · · · , zm), where m is the number of motor neurons
whose axons innervate muscles or glands. Each zi has three
neurons zi = (ziu, zip, zis), where ziu, zip and zis (i =
1, 2, · · · ,m) are unbiased, pain and sweet, respectively. And
these indicate the effects of glutamatergic synapses, sero-
toninergic synapses and dopaminergic synapses, respectively.
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Whether the action i is released depends on not only the
response of ziu but also on those of zip and zis. zip and zis
report how much negative value and positive value are
associated with the i-th action, according to past experience.
They form a triplet for the pre-action energy value of each
motor neuron, glutamate, serotonin and dopamine.

Modeling the cell’s internal interactions of the three differ-
ent types of neurotransmitter, the composite pre-action value
of a motor neuron is determined by

zi = ziuγ(1− αzip + βzis) (7)

with positive constants α, β and γ. In other words, zip
inhibits the action but zis excites it. α is a relatively larg-
er constant than β since punishment typically produces a
change in behavior much more significantly and rapidly than
other forms of reinforcers.

Then the j-th motor neuron fires and action is released
where

j = arg max
1≤i≤m

{zi} (8)

That is, the primitive action released at this time frame
is the one that has the highest value after inhibitory modu-
lation through serotonin and excitatory modulation through
dopamine, respectively, by its bottom-up synaptic weights.
Other Z neurons do not fire.

IV. EXPERIMENTS

This section, we will describe the experiment procedure
designed to test the above theory and algorithm.

A. Experiment Design

In our experiment, we uses three robots to test our algo-
rithm. One of the robots is the agent which can think and
act, the other two are its friend and enemy, respectively. If
the agent approaches the friend robot, it is rewarded with
dopamine. If it approaches the enemy, it is punished with
serotonin. In this way, the agent will learn to close its friend
and avoid its enemy. But it must learn this behavior through
its own trial and error experience.

The agent’s brain is the MDN with three areas, X , Y
and Z, as depicted in Fig. 3. Where X is the sensor area
which has three sub-areas, Xu is the unbiased area, Xp is the
pain area and Xs is the sweet area. The Xu vector is created
directly from the sensors’ input. The Xp vector identifies in
which ways the robot is punished and represents the release
of the serotonin in RN. The Xs vector identifies in which
ways the robot is rewarded and represents the release of the
dopamine in VTA.

All of the YRN , YV TA and Z sub-areas compute their
response vectors in the same way. At the end of each time
step, the neurons in YRN , YV TA and Z areas that fired
update themselves. Their weights are updated according to
the former equations (5) and (6). Their ages are updated as
follows: ai = ai+1.

According to the work of [25], serotonin and dopamine
levels are released at different levels rather than binary val-
ues. The release gives specific neurons in the YRN and YV TA

areas a non-zero response, which will have effect on the
learning rate of neurons in Yu. Moreover, the roles of a
motor neuron and an inter neuron are different. The former
roughly corresponds to the action that is responsible for the
corresponding punishment and reward; the latter corresponds
to the memory of the corresponding event. Therefore, sero-
tonin and dopamine should increase the efficiency of learning
in Yu, instead of directly discouraging and encouraging the
firing. One way to reach such an effect is to increase the
learning rate depicted as follows:

ω2(nj) = min((1 + αRN + αV TA)
1

nj
, 1) (9)

where αRN and αV TA are constants related with RN and
VTA respectively. This expression shows that reward and
punishment change the learning rate in Yu neurons. If neu-
rons in Xp and Xs do not fire, responses in RN and VTA
are zero, thus the learning rate (9) will turn into its original
form.

B. Experiment Parameters Setting

The Y and Zu areas are initialized to contain small random
data in their state vectors. The Zp and Zs areas are initialized
to zero since the agent has no idea which actions will cause
pleasure or pain. The ages of all neurons are initialized to
1. The number of neurons in Y layer and the fire number k
can be selected based on the resources available. The size
of Z area is equal to the number of actions that the agent
can perform. At any time, the agent can perform one of nine
possible actions, it can move in each of the cardinal or inter-
cardinal directions or it can maintain its current position. So
the neurons in Z areas has 9 rows and 3 columns. 3 columns
denote the Zu, Zp and Zs, respectively.

The size of each vector in the X area is determined by
the transformation function through which the robot can
sense the locations of its friend and enemy. If we define
the following entities, a (agent), f (friend), e (enemy) , we
can draw a sketch of the location relation among the three
robots as shown in Fig. 4, and get the following expressions:

θf =arctan(ax − fx, ay − fy), (10)

df =
√
(ax − fx)2 + (ay − fy)2, (11)

θe =arctan(ax − ex, ay − ey), (12)

de =
√
(ax − ex)2 + (ay − ey)2, (13)

xu ={cos θf , sin θf , cos θe, sin θe,
df

df + de
,

de
df + de

},

(14)

where θf and θe are the angle between the heading of the
agent and the direction of the friend robot and enemy robot,
respectively; df and de are the distance between the agent
and the friend and the enemy, respectively.

The pain sensor and the sweet sensor has just one value
to denote the fear and desire. Consulting the reference [5],
the fear threshold is set 125, namely, if de > 125, there is
no punishment. If 30 < de ≤ 125 , punishment value is set
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Fig. 4. The setting of the wandering plan which includes the agent, the
friend robot and enemy robot. The size of the square space used is 500×500.

4. Otherwise, the punishment value is calculated through the
fear threshold divided by the actual distance de.

Similarly, the desire threshold is set 50, namely, if df <
50, there is no reward. If 50 < df ≤ 150, the reward value
is calculated through the actual distance df divided by the
desire threshold. Otherwise, the reward value is set 3.

C. Experiment Setup

We designed a simulation environment to illustrate how
such a motivated agent would response in the presence
of its friend and enemy. The motivated robot (agent) is
controlled by the motivated “brain” which is actually a MDN.
The “brain” releases serotonin and dopamine for enemy
and friend based on specific circumstances. Through the
simulation, the agent will learn by reinforcement, deciding
which one to avoid and which one to go after, based on the
release of serotonin or dopamine.

At each time step, the horizontal and vertical coordinates
are collected for each entity. With these data, we can calcu-
late the distance between the agent and its friend (or enemy).
Through observing the distances of the agent to its friend (or
enemy), we can measure the learning procedure of the agent.

The agent starts with a behavior pattern determined by its
initial neural network configuration. The unbiased regions are
initialized with small random data while the biased regions
are initialized to zero. This gives the initial appearance of a
random behavior pattern. Eventually, it performs an action
that causes it to be rewarded or punished, causing it to
be either favor or avoid that action when placed in similar
situations in the future.

D. Results and Analysis

In the first experiment, in order to test the effect of
serotonin and dopamine on the algorithm performance of
current MDN, we compare the distance between the agent
and its friend (or enemy) under the original MDN (based
on Daly’s work, reference 2, it only considered the effects
of serotonin and dopamine on the motor area qualitatively)
and the current MDN (we designed, it not only considered
the effects of serotonin and dopamine on the motor area, but
also considered their effects on the Yu area quantitatively).

The experiment is carried out in dynamic environment,
namely, the friend and the enemy move randomly in the
environment. This setting is without the static objects, such
as house and trees. Initial location of the agent is [470, 400],
the friend’s initial location is [100, 100], and the enemy’s
initial location [250, 250]. Their distance situations change
with the time are shown in Fig. 5. From Fig. 5 , we can see
that at the initial time t=0, de is about 270, which is bigger
than the punishment threshold (125), so the agent does not
receive the punishment. The df is about 480, which is much
bigger than the desire threshold (50), so the agent receives
the reward. In other words, at initial time t=0, the agent only
receives the reward, thus it moves towards the friend along
the fastest direction. About between the time 18 and 20, the
agent begins to receive both the reward and the punishment,
and its moving direction is determined by three elements
(i.e., punishment, reward and the guidance of Yu to Zu, as
shown in Eq. (7)). Though it receives the punishment, the
punishment is not very big, and it also receives the reward,
but the reward is very big, so the hybrid effect of the three
elements is that it still moves towards the friend. At time
22, the punishment value becomes very big and the reward
is not very big, and punishment becomes the decisive factor,
so from this moment on, the agent moves far away from its
enemy instead of moving towards the friend. After the time
30, the agent only receives the reward so it moves towards
the friend.

From Fig. 5, we can also see that in the experiment,
under the same initial condition, the current MDN can
track the friend more quickly and get a smaller df , and
avoid the enemy more quickly and get bigger de than the
original MDN. The reason is the effects of the serotonin
and dopamine on the learning of Yu. Learning rate of Yu in
current MDN introduces the effect of serotonin and dopamine
as denoted in Eq. (10), but the original MDN do not. So
the learning rate of current MDN is bigger than that of the
original MDN, and its learning speed is faster than that of the
original MDN. Graphically, the current MDN can achieve a
smaller df and bigger de than the original MDN.

Moreover, the neurons in Yu area can memorize the
corresponding events (e.g., punishment or reward), and these
events will affect the agent’s psychology if it often receives
punishments or rewards. Consequently, it will generate like
or dislike to certain environment, which will affect the cor-
responding behaviors (depicted in Eq. (7)) of the neurons in
Z area, thus will determine the agent’s following behaviors.
For example, if a neuron receives reward, it will strengthen
the corresponding behavior to repeat the similar behaviors
in the following actions. Graphically, it represents the nearer
distance df . Conversely, if a neuron receives punishment,
it will also strengthen the corresponding behavior to avoid
the similar behaviors in the following actions. Graphically,
it represents the further distance de.

In addition, in Eq. (7), the constant α is relatively larger
than β, and the effect of serotonin should be much more
significant and rapid than that of the dopamine. Fig.5 testify
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(a)

(b)

Fig. 5. Distance comparison between agent and friend (a) and enemy (b)
under original MDN and current MDN.

this inference. From time 40, it is very clear that the agent
avoids its enemy much faster than it approaches the friend.

In the second experiment, we test the effects of different
environmental parameters (different punishment and reward
thresholds) on the sequential task quantitatively. The results
are illustrated in Fig. 6, six groups of numbers along the
horizontal axis denote the different distances between the
agent and the friend (or enemy), and these distances are
adopted as the reward (or punishment) thresholds in the
corresponding experiments, and the vertical axis denotes the
average distances we measured.

Based on Fig. 6, we can see that in these cases, the
distances between the agent and the friend are much smaller
than that to the enemy. All average distances to the enemy
are greater than corresponding punishment thresholds, which
indicate the effect of serotonin on the agent’s behavior.
Similarly, all average distances to the friend are smaller
than corresponding reward thresholds, which indicate the
effect of dopamine on the agent’s behavior. These different
thresholds reflect the environmental parameters, indicating
that the serotonin and dopamine systems appear to work as
expected.

In the third experiment, we study the effect of same
environment and different punishment and reward values on
the robot navigation. Initially, the three robots are set to

Fig. 6. Average distance between agent and its friend and enemy in different
situations.

constant locations in different cases. But the punishment
and/or reward values are variable. Then we analyze the
effects of these different punishment and reward values on
the agent’s behavior improvement. The effects are shown in
Fig. 7. From Fig. 7, we can see that:

(1) Case of small reward or big punishment. In this case,
the maximum reward is set 1, and the minimum punishment
is set 4. From Fig. 7 (b), we can see that because the punish-
ment value is relatively big, and the reward is relatively small,
so the agent always keeps a big distance with the enemy.
Thus when the agent receives the punishment, it moves out
of the punishment scope immediately. From Fig. 7, we can
see that between the time step 50 and 60, the agent does
not receive punishment (de > 125) and only receive the
reward. But the agent moves away from the friend instead
of moving towards it (graphically, the distance df increases
instead of decreasing). This phenomenon shows that under
the condition of relatively small reward, when the agent is far
away from the enemy, the effect of weights is more obvious
than that of the reward.

(2) Case of small punishment or big reward. In this
case, the max of punishment is set 1 and reward is set
according to section B. From Fig. 7 (b), we can see that
the nearest distance between the agent and the enemy is
20. At the former one time step, the agent is far from its
friend. The agent receives the punishment and reward at
the same time, but it moves toward the enemy instead of
moving away from it and moves towards the friend. So we
can conclude that when the agent, friend and enemy are
located on the same line, and if the reward value is bigger
than the punishment value, the punishment can be omitted.
This phenomenon also means that in this case, the reward is
set too big and the punishment is relatively too small. This
implicates that minimum punishment should be bigger than
the maximum reward. This is one of the requirements in
designing punishment and reward value, and it is consistent
with the rules in choosing the α and β values in Eq. (12).

(3) Case of teacher-reinforcement. In this case, the pun-
ishment is set 4 and reward is set 3. From Fig. 7, we can see
that in this case, the agent can not only keep certain distance
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(a)

(b)

Fig. 7. Distance comparisons among different punishments and rewards.

from the enemy, but also moves towards the friend in short
time. These mean that the punishment and reward values we
set are suitable.

V. CONCLUSIONS

We analyzed the effect of serotonin and dopamine systems
on Y neurons for sequential tasks and conducted three
simulation experiments to test the effects. Experiment results
illustrated that it was indeed the punishment and reward from
serotonin and dopamine that cause the agent’s behaviors.
The agent can decide how to react in given situations by
itself rather than being explicitly taught where to go. In
future work, the agent will be placed in a more complicated
situation with multiple friends and enemies to further study
the effects of serotonin and dopamine.
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Comparison between WWN and Some Prior
Networks

Zejia Zheng and Juyang Weng

Abstract—Although supervised learning is effective, the cost
demand on teachers is often too high to be practically applied.
How can an agent learn effectively from both motor supervision
as well as environmental reinforcement without handcrafting
task-specific rules? In this paper we present the Developmental
Network framework for emergent development. We compare
Deep Learning Network and convolutional neural network with
our Where-What-Network (WWN) in two dimensions: whether
the network uses emergent representation, and whether the
reinforcement system is non-symbolic. We discuss the drawbacks
of error-backpropagation for deep learning networks and con-
volutional filters for convolutional neural networks. In terms of
reinforcement learning, Deep Convolutional Network has been
recently combined with symbolic Q-learning. In contrast, WWN
combines hebbian learning with top-k competition to preserve
long-term memory, extracting most relevant information directly
from cluttered background. Neuromodulatory systems (i.e. non-
symbolic serotonin and dopamine pathways) are integrated into
the supervised learning pathways in WWN for reinforcement
learning. Experimentally, the motivated DN and WWN have
demonstrated capability to tackle traditional reinforcement learn-
ing tasks (i.e. simple path finding) as well as multi-concept
reinforcement learning tasks (i.e. image classification and location
recognition).

I. I NTRODUCTION

Modern machines have already out-performed human be-
ings in many domains. But despite the computing powers, we
have seen a paradox in the field of artificial intelligence: on the
one hand we have those machines out-performing humans in
tasks that are generally considered difficult (by humans), but
on the other hand those task-specific machines perform poorly
in areas that are commonly considered easy (by humans), such
as vision, audition, and natural language understanding. What
is the proper architecture for general intelligence? Can we
generate intelligence by pure logic base manipulation?

Newell and Simon wrote in [18] that a physical symbol
system has the necessary and sufficient means for general
intelligent action. They define a physical symbol system as
a number of symbols related in some physical way (such as
one token being next to each other). The hypothesis implies
that computers, when we provide them with the appropriate
symbol-processing programs, will be capable of intelligent
action [19]. Their assumption is the bases for the research
from the school of Symbolists. Symbolic approaches have
generated success in well-defined problems, but it has been
steadily receiving criticisms from various sources.

Zejia Zheng and Juyang Weng are with Michigan State University, East
Lansing, MI, USA (email zhengzej, weng@cse.msu.edu). Juyang Weng is
also with the MSU Cognitive Science Program and the MSU Neuroscience
Program.

The most serious of all criticisms is the grounding problem
of all symbolic machines. The symbol grounding problem,
which refers to how symbols relate to the real world, was first
discussed by Steven Harnard in [10]. The problem describes
the scenario where the learner tries to learn Chinese by
consulting a Chinese-Chinese dictionary. The endeavour would
bound to be unsuccessful because the learner cannot ground
the symbol’s meaning to the environment. In the case of
autonomous agents, we have to take into account that the
system needs to interact with the environment on its own.
Thus, the meaning of the symbols must be grounded in the
system’s interaction with the real world.

Researchers have established that a valid solution of the
symbol grounding problem will need to combine the bottom-
up sensor input with a top-down feedback approach to ground
the symbols. The agent should also have developmental ability
to develop its internal representation without explicit supervi-
sion [26]. Many connectionist networks seems to satisfy those
conditions.

The best representatives of the recent development in the
field of connectionist models are Deep Learning models (by
deep-learning, we mean a cascade of areas like those that have
been published in [11] and [3]) and Convolutional Neural Net-
works (e.g. HMAX and LeCunn Network). A Convolutional
neural network is comprised of one or more convolutional
layers (often with a subsampling step) and then followed by
one or more fully connected layers as in a standard multilayer
neural network. Deep learning network is a family of multi-
layer neural networks with hierarchies of representation. Both
convolutional network and deep belief networks use back-
propagation as its training algorithm [11] [14] [3].

A detailed discussion of properties of convolutional net-
works and deep architectures is presented in the following
section, after which we discuss our approach of autonomous
learning based on Where-What-Network. Generalization of
the network in the direction of reinforcement learning and
concept scaffolding is discussed in Section IV. By concept
scaffolding, we mean that the learning procedure of complex
tasks is facilitated by the already learned simpler tasks, as
is observed in stages of early language acquisition where
children concatenate the already learned simple words to
express complex meanings [1].

II. DN FRAMEWORK AND ITS EMBODIMENT

A. Developmental Network framework

Here we define the framework of Developmental Network
(DN). DN is introduced in [33] to explain basic principles
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about an autonomous agent.
A DN has three areasX,Y, andZ. X serves as the input

area,Y is called the hidden area in traditional neural network
literature, andZ is the motor area.

To generate a corresponding actionz for the current input
x, there should be an update function to update the states in
each area:

(x′, y′, z′, N ′) = fDN (x, y, z, N) (1)

N ′ stands for the other adaptive part of the network, such as
strength of the connection between neurons.

The flow of information can be characterized in the follow-
ing two steps:

1) X(t− 1)→ Y (t − 0.5)← Z(t− 1) Current input and
output pair, current input image and motor supervision,
for example, would trigger specific neuron firing in the
Y area. The firing neuron inY would learn the input pair
based on the learning algorithm. In WWN, the learning
algorithm is LCA. In DBF, the learning algorithm can
be incremental version of error back propagation.

2) X(t) ← Y (t − 0.5) → Z(t) The internal states of the
agent would generate corresponding action inZ area
and prediction inX area in the next time stamp.

A DN following the above paradigm does not require the
task to be known to the programmer. Without given any
task, a human designs (or nature evolves) the general-purpose
DP which resides in the DN as a functional equivalence
of the genome that regulates the development. A DN can
incrementally learn any complex finite qutomata but the DN
is grounded to the real world.

One successful embodiment of DN is the Where-What-
Network. Where What Networks [15] are a visuomotor version
of the Developmental Network, modeling the dorsal (where)
stream and the ventral (what) stream of visual and behavioral
processing. Where-What Networks (WWN) have been suc-
cessfully trained to perform a number of tasks such as visual
attention and recognition from complex backgrounds [30],
stereo vision without explicit feature matching to generate
disparity outputs [25], and early language acquisition and
language-based generalization [16].

Many other connectionist models seem to be possible candi-
dates for the implementation of DN framework. Recent Deep
Learning Networks and Convolutional Networks claims to be
inspired by at least part of human brain functions (visual
cortex). We look into the learning algorithms of these two
architectures in the following section.

B. Deep Architecture and Convolutional Networks

This is a perfect place to examine the details of existing
vision-attention models. The first model we choose to compare
with here is the convolution networks. Convolutional networks
are widely used for its minimum requirement on weight
storage space and the ability to find transformation invariants.
A convolutional network for visual recognition would be the
HMAX model introduced in [24]. HMAX is a hierarchical
model for visual cortex. C1 Feature vector is extracted by

TABLE I
COMPARISON BETWEENWWN AND CONVOLUTIONAL NETWORK

Conv Net WWN
Feature Detector Shared Locally Optimal

Top-down attention No Yes
Multi-concept No Yes

Sparse Response No Yes

pooling local maximum responses from S1 neurons, which
areessentially layers of gabor filters with specific orientation
preferences. C1 Feature vector is then fed into a dictionary of
learned feature vectors(S2) to extract the final feature vector.
Learning in HMAX is somehow rudimentary as the low-level
feature detector is handcrafted and non-adaptive.

Our model, WWN, is better suited for autonomous devel-
opment compared to convolutional models in the following
aspects:

1) Filter optimality. The low-level features (receptive fields
of S1 units) in convolutional networks like HMAX are
handcrafted instead of learned. We have to stack layers
of gabor filters at the same location before we can have
better performance. In WWN, spatial and temporal opti-
mality in LCA learning algorithm guarantees efficiency
of the learned feature detectors.

2) Top-down attention. Convolutional neural networks
models like HMAX, LeNet [14] or NeoCognitron [8]
are strictly feedfoward ventral pathway models without
top-down feedbacks. Inspired by the bidirectional con-
nections prevalent in the visual cortex, we modeled the
top-down effect of attention as the top-down connec-
tion from the motor layer to the hidden layers. This
allows guided feature extraction from the bottom-up
inputs and gives better representation results. It is worth
to notice that other models have top-down attention
mechanisms as well. For example, Walther and Koch
[28] modeled object-specific attention in HMAX using
feedback connections from the object layer back to the
complex features CF in order to infer suitable complex
feature maps. Their model is similar to the top-down
connection from the TM in WWN to the hidden layers.
WWN has one more set of top down connection from
LM to the hidden layers, allowing the network to pay
special attention to certain locations in the image. The
combination of space based attention and object based
attention in one single network is an important novelty
in WWN.

3) Multi-concept learning. As far as we know, there is
no single network that can report multiple concepts at
the same time. Existing visual models, especially those
with convolution filters, would first determine whether
the object is present in the given image, and then
convolve the image with a template to find the location.
However, ventral and dorsal pathways work in parallel
instead of sequential. The recognition of ‘where’ should
independent of the recognition of ‘what’ [9]. In WWN,
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TABLE II
COMPARISON BETWEENWWN AND DEEPLEARNING NETWORKS

WWN Deep Nets
Major Assumption Optimal Input Optimal Input

Action Abstraction Reconstruction
Long Term Memory Yes No
Emergent Hierarchy Yes No

the two pathways share the same feature maps (e.g. the
short-time activation inY area). Firing and learning
in one motor (e.g. LM), however, can be affected by
firing in the other motor (e.g. TM) via the top-down
connection from motor toY (e.g. TM→ Y ), thus WWN
is more biologically plausible compared to sequential
localization architectures.

4) Sparse response. WWN supports the sparse coding idea
of Olshaushen and Field [20]: each cortical area has few
neurons to fire. But our model is different in a number of
important aspects. Instead of starting from a hypothetical
objective function, our model starts from the cortical
connection patterns experimentally observed in many
physiological studies, as surveyed and summarized by
Felleman and Van Essen [7]. HMAX, as is proposed in
[24], does not have sparse response. Hu and co-workers
attempted to combine HMAX with sparse coding [12],
but the sparsity lies only in the S1 layer instead of the
entire network.

Another important class of visual recognition network is the
Deep Learning Networks. Much of this work appears to have
been motivated by the hierarchical organization of the cortex,
and the output of the networks are often compared with the
simple receptive fields found in V1 and V2 [23] [21].

Here we argue that WWN is more biologically plausible
compared to Deep Architectures in the following aspects:

1) Major assumption. The major assumption of deep ar-
chitectures for visual recognition is to model the distri-
bution of training data using limited neurons. In other
words, deep architectures like Deep Belief Networks
[11] and Stacked Autoencoders [27] aim to minimize
the representational error of the training dataset. This
assumption however, is highly unlikely in the course
of learning, as learning is closely connected with the
immediate action. Therefore, A better option is to min-
imize the error in action, or motor skills, rather than
just to restore the input image. By implementing the
bidirectional connection from the motor layer to the
hidden layer, WWN links its internal representation
directly with actions, minimizing the error in motor
skills via hebbian learning.

2) Learning algorithm. Most deep architectures use error
back-propagation as its learning algorithm [11] [27]
[23]. Error back-propagation finds the gradient of the
error function with respect to the current parameter ,
which is the entire set of weights in the network (or the
current layer if layer wise training is used). In this sense,

error back propagation would adjust all the weights,
however minutely, as it is doing gradient descent. There
is no competition in hidden neurons when training with
back-prop. This corrupts the long-term memory in the
network because neurons irrelevant to the current input
would be forced to adjust their weight when error back
propagation is finding the gradient. LCA however, only
adjust the weights of the neurons with the highest
response values, preserving the long-term memory in
other neurons.

3) Emergent hierarchy. As is discuss in previous sections,
hierarchical architecture would emerge in WWN via
synaptic maintenance [29]. Learning is not constrained
in specific layers within WWN. Deep architecture, how-
ever, hand-craft the layers and train them by greedy
layer-wise training [11]. Biologically speaking, it is
unlikely that V1 neurons would develop prior to V2
neurons. It is even more unlikely that V1 neurons would
freeze their development while V2 neurons are fine-
tuning their synaptic weight. WWN offers a develop-
mental hierarchical model for visual cortex, which is
more biologically plausible.

C. Generalization: Reinforcement Learning

In terms of reinforcement learning, techniques used in
traditional reinforcement learning include: the dynamic-
programming approach which uses basic Bayesian reasoning
to solve for an optimal strategy [4], Markov decision processes
(MDPs) models which can handle delayed reinforcement [5],
adaptive heuristic critic algorithm in which the value-function
computation is implemented by a reinforcement-learning com-
ponent modified to deal with multiple states and non-stationary
rewards [2], and Watkins Q-learning algorithm which is able
to compare the expected utility of the available actions without
requiring a model of the environment [32]. These are all
symbolic methods which suffers from the ground problem as
is explained at the beginning of the section.

Reinforcement learning in Deep Learning architectures or
convolutional neural networks, however, is a relatively new
topic and has not been studied until recently. The proposed
method in [17] combines deep learning with Q-learning
method to train an agent to learn how to play a simulated
shooting game. A similar approach is proposed in [6] which
combines Dayan style planning (based on Markov states) with
Deep Belief Networks for image observation. The reinforce-
ment learning modules in these networks are all symbolic
modules which are non-developmental and contradicts the
purpose of autonomous development.

WWN, on the other hand, deals with reward and punishment
by simulating the dopamine serotonin pathways in human
brain. We implemented neuro-modulation in WWN by inte-
grating reward and punishment learning pathways with the
supervised learning system, allowing the network to explore
without supervision. Concept scaffolding in location motor
enabled the agent to learn finer location concepts with the
help from previously learned skills. Our generalization uses
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TABLE III
TWO DIMENSIONAL COMPARISON AMONG LEARNING METHODS

Symbolic Emergent
Not Motivated Finite Automata Deep Learning

Conv Nets
Motivated Q-learning WWN

consistent neural network based modulatory systems compared
to the traditional symbolic methods (e.g. Markov state based
methods). The generalization is more biologically plausi-
ble and more compatible with our Developmental Network
framework for autonomous development compared to existing
reinforcement learning modules for deep architectures and
convolutional networks.

III. N ETWORK ARCHITECTURE

A. Where What Network

Here we introduce how learning takes place in Where-What-
Network.

It is known that our visual system has two major pathways:
ventral (what) for object identification and dorsal (where) that
deals more with visuomotor aspects (i.e., where to reach for
an object), which presumably codes an objects location. These
pathways separate from early visual areas and converge at
prefrontal cortex, which is known to be active in top-down
attention. Prefrontal cortex connects to motor areas. WWN
was built inspired by the idea of these two separating and
converging pathways, as is illustrated in Fig.1. Meaningful
foregrounds in the scene will compete for selection in the
ventral stream, and locations in the scene will compete for
processing in the dorsal stream.

Fig. 1. A schematic of the Where-What Networks (WWN). It consists of a
sensory cortex which is connected to the What area in the ventral pathway
and to the Where area in the in the dorsal pathway.

B. The learning algorithm

The learning algorithm of WWN is described in detail in
previous papers [25] [15] [30].

1) Pre-response of the neurons:Each brain area uses
the same area functionf , which allows the internal area
to develop representations of the training data. Generally
speaking, each neuron in internal area stores two sets of weight

Fig. 2. An example of activation patterns and neuronal changes during
learning process in the network. The network selects winning neuron based
on top-k competition over the top-down responses and bottom-up responses.
The pattern on the left shows the preresponse of the neuron, and the grid
on the right shows the final response of the neuron. The winning neuron is
marked in red at the final response layer.

vector (vb.vt), representing bottom-up weight and top-down
weight separately. Similarly, neurons in motor area only have
bottom-up weight, while neurons in sensors only have top-
down weight. The top-down weight in sensors is useful when
we need to predict future images based on current internal
responses. In the current program we do not need that set of
weight.

The pre-response value for each neuron is calculated as:

r(v̇b, ḃ, v̇t, ṫ) = (v̇b · ḃ+ v̇t · ṫ)/2 (2)

where b and t are bottom up input and top down input
respectively. Each vector in equation (2) is normalized before
calculation:

v̇ = v/||v||

Each neuron in theY area extracts local input from the
input image. The local window is calledreceptive fieldof that
neuron, depicted in Fig. 2 as the red box in the input image.

Neurons in theZ area accepts the global response values of
all the neurons in theY area as bottom up input. The response
values are calculated based on top-k competition explained in
the following subsection.
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2) Top-k competition:The final neuron response inY area
is given by top-k competition. The k neurons with the highest
pre-response value would fire with the adjusted responses
while other neurons would be suppressed. To adjust the
response values based on their ranking:

r′ =

{

r · (r − rk+1)/(r1 − rk+1) rk+1 ≤ r ≤ r1

0 otherwise

wherer1 is the highest response value;rk+1 is the k + 1th
highest response value.

3) Hebbian-like learning:If a neuron wins in the multistep
lateral competitions described above, its bottom up weight and
top down weight would update using the following Hebbian
learning rule:

wu,i ← β1wu,i + β2rixt

whereβ1 andβ2 determine retention and learning rate of the
neuron, respectively:

β1 =
mi − 1− µ(mi)

mi

, β2 =
1 + µ(mi)

mi

(3)

with β1+β2 ≡ 1, mi is the neuron’s firing age, i.e.mi = 1 in
the beginning of training, and increments by one every time
the neuron wins lateral competition.
µ is a monotonically increasing function ofmi that prevents

the learning rateβ2 from converging to zero asmi increases.

µ(mi) =















0, if mi < t1

c(mi − t1)/(t2 − t1), if t1 < mi < t2

c+ (t− t2)/γ, mi > t2

Typical value for those parameters in the experiments reported
afterwards would be :t1 = 10, t2 = 103, c = 1andγ = 104.

The same Hebbian learning rule updates the top-down
weights of neuorns using similar equation:

wd,i ← β1wd,i + β2rirt

The firingZ neuron accepts Y area firing patterns as bottom
up input and updates using the same Hebbian learning rule.

IV. GENERALIZATION

To achieve full autonomous development, the agent must
be able to learn without direct supervision. That means that
the agent must be able to refine its existing motor skills
based on previous experience. Inspired by the instructional
scaffolding process proposed by Applebee in [13] when he was
observing how young children learn to write, we implement a
coarse to fine location concept learning scheme to the network
which allows the network to learn finer location concepts using
previously learned locations. To learn from exploration also
requires the agent to have some sort of reinforcement learning
mechanism. We integrated the reward and punishment learning
pathways into WWN network, modeling the neuromodulatory
systems found in human brains.

A. Motor neuron splitting: use old knowledge to learn new
skills

When a young child learns to recognize the object at certain
location, he learns the spatial concepts gradually. He also
uses the already learned knowledge to help him acquire new
skills. [31] shows how children develop projective/Euclidean
understanding before they could comprehendin front of and
behind.

Our network currently models this procedure in the location
motor (LM), but similar procedures can be applied to type mo-
tor (TM) easily. Coarse to fine learning is achieved by splitting
each of the location motor neuron into four child neurons, each
representing a finer spatial concept, as is illustrated in Fig.3.

The following steps would take place when LM splitting
occurs:

1) Child location motor neuron copiesvb from parent
neuron.

2) Firing age of child location motor neuron set to 1 (or a
very low number).

3) Y area neurons copy connection to the parent neuronvt

to the child location motor neuron.

Fig. 3. LM splitting mechanism. Each location motor neuron splits into four
child neurons to learn finer spatial concepts.

B. Reward and punishment pathways: Modulated Develop-
mental Network

The architecture of the two pathways are introduced in detail
in the previous papers [22] [34]. Here we only give a brief
summary due to limited space.

Previous work modeled two neurotransmitters in human
brain: serotonin and dopamine. These two neurotransmitters
are released separately in rewarded or punished events. The
model simplifies the role of those two neurotransmitters,
i.e. dopamine is released when the agent is rewarded, and
serotonin is released when the agent is punished. The papers
demonstrated that the reward and punishment system built
based on Developmental Network enables the agent to learn
according to the sweetness(reward) and pain(punishment) it
receives when making educated guesses rather than specific
instructions of correct movement(supervision).

Although Fig.4 has 11 areas on the plot, in the program we
simplify that architecture into three pathways:Xu ⇋ Yu ⇋

Zu is the unbiased pathway,{Xu, Xp} ⇋ Yp ⇋ Zp is the
punishment pathway, and{Xu, Xp}⇋ Ys ⇋ Zs is the reward
pathway.

VTA and RN are treated as conceptual area that trigger
firing when reward or punishment is present, corresponding
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to two if clauses in the program.YV TA and YRN are the
same areas asYp andYs, using different neuromodulators (i.e.
GABA for inhibitory connections, and glutamate for excitatory
connections.) This means that these two regions are still active
even when no punishment and reward is present, allowing the
network to recall punished and rewarded instances with pure
input fromX .

The network calculates three responses:ru for response
value in the unbiased pathway,rp for response value in the
punishment pathway andrs for response value in the reward
pathway.

The final response value is given by:

ri ← riu(1 + ris − γrip) (4)

γ is usually larger than 1, indicating that inhibition from the
pain pathway is much more effective compared to excitation
from the reward pathway.

Another effect of neuromodulators is that they would in-
crease the learning rate in the corresponding areas. This would
change equation 3:

β1 = 1− β2, β2 = α ·
1 + µ(mi)

mi

(5)

In the experiment,α = 2.

C. Maze exploration: an example

To illustrate how reinforcement learning to take place in DN
(or WWN), we discuss in detail how DN can solve traditional
reinforcement learning tasks in this section. The maze and
agent track is shown in Fig.5.

The task for the agent is to find the food at the lower right
corner of the maze by exploration. These are the constraints
imposed on the agent to make the task non-trivial:

1) Limited sight. The agent can only see the tile immedi-
ately adjacent to its current position.

2) Walls. For this demonstration, we built walls at 3 places
on the map (dark blue tiles in the figure). When the
agent bumps into walls, it would receive a pain signal
of level 5.

3) Sense of smell. The food gives out some sort of oder.
The further the agent is away from the food, the less
intensive the smell is. Thus the agent can compare the
current scent with the scent of the previous states. If
the scent is intensified by the action (say step to the
right), the agent would receive a mild reward of level 1.
If the scent is the same, the agent receives no reward or
punishment. If the scent is weakened, the agent would
perceive this as a punishment of level 1.

4) Ultimate reward. Finding the food would give the agent
a reward of level 10.

As is shown in the figure, the agent starts wondering around
for a little bit. But it soon learns that stepping back is bad
and hitting walls is even worse. After 40 epochs of training,
it finds the best route to the food.

There is no objective function involved in the teaching
scheme. The agent learns that food is ‘good’ from the input

Xu (88x64)

Xp (5x5)

Xs (5x5)

Yu (15x15)

Yp (5x5)

Z (34x3)

Ys (5x5)

YRN(5x5)

YVTA (5x5)

RN (5x5)

VTA (5x5)

Global

Global

Global

Global

Global

Global

Global

Global

Global

Global

Local (1to1)

Local (1to1)

Global

Global

Fig. 4. A DN with 5-HT and DA modulatory subsystems. It has 11 areas.
RN has serotonergic neurons. Neurons inYRN or Z have serotoninergic
synapses. VTA has dopaminergic neurons. Neurons inYV TA or Z have
dopaminergic synapses. The areasYu, Yp, Ys, YRN , YV TA should reside in
the same cortical areas, each represented by a different type of neurons,
with different neuronal densities. Within-area connections are simulated by
top-k competition.The number of neurons in the figure does not necessarily
corresponds to the number of neurons we use in the experiment. The figure
does not show all the neurons in the subareas due to limited space. The
Z neurons compute unbiased response( the first column, using glutamate),
inhibition response ( second column, using serotonin), and excitation response
(third column, using dopamine). ”Global” indicates that the neurons accept
input from all neurons in the previous area. RN (raphe nuclei) is the subarea
inside human brain that secretes serotonin. VTA (Ventral tegmental area) is the
subarea that secretes dopamine. Basically Xp and Xs does not produce those
neurotransmitters but only sends input signals to those two brain areas. The
function of these two layers is for biological correctness. Thus each neuron
in Xp ( or Xs) corresponds to one neuron in RN (or VTA). The link is one
to one, thus ”Local”.

of its reward sensor. Similarly, the concept to ‘avoid hitting
walls’ is learned by avoiding punishment during exploration.
As is proposed in the introduction, the training for this agent
is task-non-specific. The programmer does not need to know
what is in the environment or what the task is.

This example is not intended for a full scale implementation
of maze exploration. The agent in the example is short sighted
and can not plan ahead, thus would perform poorly in a natural
environment. To find a path in a complicated environment, the
agent must be able to develop the idea of localization. This
means that we need one moreZ area to allow the agent to
develop the concept of ‘states’. The bidirectional connection
betweenY area andZ area would allow the agent to handle
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Fig. 5. Maze exploration example. The agent, starting from the top left corner
of the maze, aims to find the food located at the lower left corner of the maze.

delayed reward and form strategic plans.

D. Other experiments

The Modulated Developmental Network has been tested in
the following tasks:

1) Face recognition task with reinforcement learning teach-
ing schedule. We collected 913 training images and
171 testing images of 33 people, with each person
representing a different class. The images are fed to the
agent sequentially. Given a image, the network would
make an educated guess based on its current network
weights, and then the teacher would issue reward or
punishment based on the educated guess. The sample
input is presented in Fig.6. The result is presented in
Fig.7. The result is originally reported in [34]. We
showed that Modulated DN with dynamically changing
learning rate and top-k competition would give better
learning result compared to the original DN.

2) Integrated learning in WWN with concept scaffolding.
We trained the agent to recognize location and type
information of the foreground object. The complexity
of the task resulted in too many wild guesses which
impaired learning in the network. Concept scaffolding
in LM was implemented in the network to solve this
issue. This allows the network to learn new finer location
based on its already learned motor skills. This minimizes
the number of educated guesses and thus gives better
learning in WWN. The experiment details are reported
in [35].

3) Realtime training and testing. We developed a graphic
user interface, shown in Fig.8, to train and test the
agent with real-time video stream. The interface grabs
image from ip camera realtime and trains the network
according to the set up parameter. The agent learns
directly from cluttered background at a speed of 4
frames per second. The network is currently trained un-
der supervised learning mode. Future interface improve-
ment involves integration of reinforcement learning and
concept scaffolding with the current training scheme.

E. Discussion

The reward and punishment pathway enabled our agent
to develop likes and dislikes. The system is different from
traditional symbolic reinforcement learning in the sense that
the system does not need a symbolic representation. The

Fig. 6. Sample training images for face recognition task. Each picture contains
a different expression. The data set contains 913 different images of 33 people.
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Fig. 7. Speed of learning in DN and MDN for face recognition task.Red
line: Modulated Developmental Network with dynamically changing learning
rate and top-k competition. Blue Line: Original Modulated Developmental
Network. Green line: Developmental Network. X axis: Number of Training
Samples. Y axis: Recognition error rate. Training samples are randomly
selected from the 913 face image dataset. Our version of MDN converges
to the best recognition much faster than DN and original MDN. Original
MDN and DN shares the same recognition rate, while our version of MDN
gives a better recognition rate than the former methods.

Fig. 8. GUI layout for realtime reinforcement learning WWN. 1.Viewer.
Shows current input video. When teaching also highlights the supervised
location. 2.3 modes of supervision: auto tracking, which calls the built
in tracking algorithm to feed the agent with the location information;
mouse tracking, which tracks the movement of mouse on the screen;
and mouse click, which only updates with the current frame and the
location where the teacher clicks mouse. 3. Bottom-up weight visualiza-
tion of current layer. 4.Output. When testing shows detected type and
location. 5.Firing in the Y area. A short demonstration is available at
https://www.youtube.com/watch?v=id9j7Pb1bOA.
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learning mode can be switched back to supervised learning
on-line.

For complicated tasks, the agent would learn to solve the
puzzle based on its previous experience via concept scaffold-
ing. The neuron splitting scheme can be easily generalized to
other motor areas (TM, for example).

Our network is the first integrated learning system that
combines reinforcement learning and supervised learning al-
gorithms. The research presented here is important to achieve
full autonomous development. Future works involve the de-
velopment of planning mechanism in the brain area. We
would also test the network with large data sets to check its
representational capability.

V. CONCLUSION

In this paper we present the DN framework for autonomous
development and WWN as its embodiment. By comparing
WWN with the existing networks we argue that WWN over-
comes the underlying flaws in those networks and would
thus be an ideal candidate for modelling development with
biologically plausible learning algorithms. We present our
research on the generalization of the network in the direction
of reinforcement learning and concept scaffolding. Our result
shows that by adding the two biologically inspired pathways
the network can learn based on environmental feedbacks
without direct supervision. The work presented in the paper
is an important stepping stone to achieve full autonomous
development.
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Abstract—Saliency detection is a challenging and important 
problem in computer vision. Early works [1] mostly focused on 
predicting the fixation of human eyes, while recent works [2] 
mainly work on predicting salient objects in natural images. In 
this work we focus on the task of object level salient region 
detection. 

Previous approaches are mainly based on the contrast prior 
of the foreground object, usually utilizing the appearance 
contrast with image neighborhood of a certain scope. Although 
various computational models have been proposed, the problem 
remains challenging due to the large variation of the objects, 
complex textures in background, etc. 

As a first exploration of the background prior in saliency 
detection, Wei [2] et al. make use of the observation that most 
image boundary areas belong to background and the 
background is usually large and connected, they propose a 
salient region detection algorithm by measuring the saliency of 
an image patch using the length of its shortest path to the image 
boundary. Some follow-up works along this direction are 
proposed recently and achieve quite impressive results on 
various salient region detection datasets. 

In this work, we propose a novel salient region detection 
algorithm based on background prior with two saliency 
measurements proposed. Instead of measuring the contrast 
between objects and its neighborhoods, we evaluate the saliency 
of an image region by measuring its distance with the estimated 
background in both feature domain and connectivity domain. 

The input image is first preprocessed to get an appropriate 
superpixel representation. In order to suppress small-scale 
textures of images that are supposed to be not sensitive for 
human vision system, we employ a structure extraction 
algorithm [3] to smooth out the texture areas of the input image. 
Superpixel segmentation [4] is then applied to the 
texture-suppressed image to reduce the number of processing 
units. Superpixels based on the texture-suppressed image 
provide an efficient image representation with homogeneous 
elements. Then we estimate the background using the 
superpixels near the image boundary by utilizing the location 
prior of background.  

Motivated by the observation that the variations of image 
background can be mostly described in the estimated 
background, we make a statistics of the distance between the 
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foreground/background superpixels with the estimated 
background. For each background, we select several most 
similar superpixels in the estimated background and the mean 
Lab average color distances between the background superpixel 
and each of these selected superpixels are calculated. Then the 
average summation these distances in each image is plotted in a 
histogram. Same procedure is applied to get the histogram of 
the distance between the salient object and the estimated 
background. The statistics show that the distances between the 
image background with the estimated background are relatively 
small and tend to be zero, while the distances between the salient 
region with the estimated background are relatively large and 
can be highlighted using this measurement. 

Based on the observation stated above, we propose a saliency 
measurement called background contrast. The background 
contrast of a superpixel is defined as the summation of its k 
minimum color distances to the superpixels of estimated 
background.  

The surround cue of the object is also incorporated by the 
measurement of background connectivity. As the Gestalt 
psychological studies suggest that several factors are likely to 
influence figure-ground segregation, e.g. size, surround and 
symmetry, we explore the surround cue for saliency detection. 
Regarding the superpixels as nodes in a weighted graph and the 
weight between neighboring nodes is the color distance, we 
define the background connectivity of a superpixel as the 
shortest geodesic path among each superpixel to its k most 
similar superpixels of the estimated background. The feature 
utilized is mean Lab color of each superpixel and the distance is 
measured in L2.  

Then we integrate the two measurements by linear 
combination and finally a post-processing involving spatial and 
color adjacency is employed to generate a per-pixel saliency 
map.  

Experiments on three publicly available salient region 
detection datasets show that our algorithm performs favorably 
against the state-of-the-art algorithms. The incorporation of 
texture suppression is also proved to be effective for improving 
the detection accuracy. 
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Abstract—Searching tasks by humans are performed in a 
more intuitive and efficient manner by selecting only a few 
regions to focus on, while observers never form a complete and 
detailed representation of their surroundings.  

Usually two kinds of top-down cues are used for gaze 
movement control in target searching: the cues about targets 
such as shape, color, scale and the cues about the visual context 
that contains the target and the relevant objects or 
environmental features with their spatial relationship. Torralba 
used global context to predict a horizontally long narrow region 
where the target is more likely to appear. Ehinger and Paletta  
used object detectors to search the target in such predicted 
region for accurate localization. Kruppa and Santana used an 
extended object template containing local context to detect 
extended targets and infer the location of the target via the ratio 
between the size of the target and the size of the extend template. 
Different from the above methods which adopted global context 
or local context cues separately, Miao and et al. proposed a 
serial of eye-movement control models based on neural coding 
of both global context and local context cues to control a virtual 
gaze movement for target searching [1-4].  

In this study, we simulate human searching paths by Miao et 
al’s model [4] in a facial feature locating task on a face dataset. 
To test the performance of the introduced model, we collect 
human eye-movement data of 27 subjects by a SMI iVIEW X 
Hi-Speed eye tracker when the subjects are carrying out the 
facial feature locating task on the face dataset. We compare the 
searching paths generated by the introduced model against 
human eye-movement data. Experimental results demonstrate 
that the model achieves a good prediction accuracy on both 
dynamic scan-paths and static fixation locations. 

Twenty-seven college students from Beijing University of 
Technology participated in this study, with 15 females and 12 
males. A set of 30 face pictures are prepared as stimuli. Among 
this set, 15 pictures are female-face, and the rest are male-face. 
The size of each picture is 1024× 768 pixels. Pictures are 
presented on a color computer monitor at a resolution of 1024×
768 pixels. The monitor size was 41 cm by 33.8 cm, and the 
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participants were sited in a chair about 76 cm in front of the 
screen. The independent variables of the experiment are search 
time and fixation numbers. The dependent variable measures 
are the gender that the participants belonged to, the sex gender 
of the face pictures being shown, the initial points from four 
different quadrants and the facial feature to be located: the left 
eye or the right eye. Following a nine-point calibration 
procedure, participants were shown written instructions asking 
them in preparation for a target search test in the following face 
pictures. For each trial, a black indicator was first appeared in 
the middle of the white screen for 1000 ms. Then a “+” was 
presented at one position of four starting points in a random 
order to make sure searching from the pre-defined positions. 
After a face picture presented in the middle of the screen for 
2000 ms, the participants were asked to find the target eye as 
accurately and quickly as possible. Participants were demanded 
not to look at anything else in the pictures after they had found 
the target. 

We compare the searching paths generated by the model with 
the scan-paths recorded from the subjects. The two paths are all 
divided into pieces each consisting of two adjacent fixations. The 
Hausdorff distance is used to evaluate the predicting 
performance of the searching paths by the model with the 
scan-paths of all subjects recorded by the eye tracker. The 
scan-paths between different subjects are also evaluated. We 
also compute the precision for target locating via the searching 
paths from four different quadrants to left eyes and right eyes. 

Experimental results show that the simulated scan-paths are 
similar to human saccades: the average of the Hausdorff 
distances between the searching paths generated by the model 
and the subjects on all the corresponding pictures is 29.18, 
which is similar to the average Hausdorff distance of 26.36 
between the scan-paths generated by every two subjects of the 
total 27 subjects. Experimental results also show that the model 
achieves an average search precision that is above 96%. 

REFERENCES 
[1] J. Miao, X. Chen, W. Gao, and Y. Chen, A visual perceiving and eye 

ball-motion controlling neural network for object searching and 
locating, in Proc. Int. Joint. Conf. Neural Netw., Vancouver, BC, 
Canada, 2006, pp. 4395–4400. 

[2] J. Miao, B. Zou, L. Qing, L. Duan and Y. Fu, Learning internal 
representation of visual context in a neural coding network, in Proc. Int. 
Conf. on Artificial Neural Networks, Thessaloniki, Greece, 2010, vol. 
6352, pp. 174–183. 

[3] J. Miao, L. Qing, B. Zou, L. Duan and W. Gao, Top-down gaze 
movement control in target search using population cell coding of 
visual context, IEEE Trans. Autonomous Mental Development, vol. 2, 
no. 3, September 2010. 

[4] J. Miao, L. Duan, L. Qing and Y. Qiao, An Improved Neural 
Architecture for Gaze Movement Control in Target Searching, Proc. of  
IEEE International Joint Conference on Neural Networks’2011, San 
Jose, USA, Jul. 31-Aug. 5, 2011. 

An Experimental Study on Simulating Human Eye Searching Paths 
Using an Eye-Movement Control Model Based on Neural Coding of 

Visual Context  

Lijuan Duan, Zhiguo Ma, Jili Gu, Jun Miao 

© BMI Press 2014 18



BMI Press ISBN 978-0-9858757-0-1 US$ 35


	ICBM-2014-Proceedings
	ICBM-2014-Proceedings
	Proceedings 2014 cover
	ICBM2014
	Paper 105 WangDongshu
	Paper 111 ZhengZejia
	Paper 107
	Paper 108


	Proceeding ICBM2014-weng-page



